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(a) (b)
FIGURE 4: Mobile Application for the support of patients. a) Main dashboard b) Patient
calendar

(a) PCA based (b) MDS based
FIGURE 5: Dimensionality reduction and visualization for cepstrogram based feature
extraction.The colors correspond to: Yellow for drug actuation, magenta for exhala-
tions, cyan for inhalations and red for other types of noise.

(a) PCA based (b) MDS based
FIGURE 6: Dimensionality reduction and visualization for Mel-frequency cepstral co-
efficients based feature extraction.The colors correspond to: Yellow for drug actuation,
magenta for exhalations, cyan for inhalations and red for other types of noise.

aforementioned approaches, we visualize the feature space
by employing two separate methods: a) principal component
analysis (PCA) method and b) multi-dimensional scaling
(MDS) [38]. Figures 5 to 7 depict the visualization of the
feature vectors in the three dimensional feature space for
each of the dimensionality reduction methods. As it can be
observed, the Cepstrogram based features demonstrate higher
separability than the other approaches, which is later verified
by the classification accuracy results presented in subsection
V-B.

(a) PCA based (b) MDS based
FIGURE 7: Dimensionality reduction and visualization for spectrogram based feature
extraction. The colors correspond to: Yellow for drug actuation, magenta for exhala-
tions, cyan for inhalations and red for other types of noise.

FIGURE 8: Classification result. The red color corresponds to drug actuation, the green
color corresponds to inhalations, the blue color corresponds to exhalations and the gray
to other sounds.Each colored area of the classification result corresponds to a segment
of the spectrogram right below.

The Cepstrogram C(m, k) is formulated as

C(m, k) =

∣∣∣∣∣
N−1∑
n=0

log|X(m,n)|2 cos(
2π

N
kn)

∣∣∣∣∣
2

(1)

where X(m,n) is the short time Fourier transform, m
denotes the m − th temporal component and k the k − th
cepstral coefficient and n the n − th frequency component.
The audio feature vector v = [v1v2v3 . . . vk] is derived by
summing up the quefrency magnitude for every temporal
window for each quefrency component.

vk =
M∑
m=1

C(m, k) (2)

The feature vector v is then sub-sampled to 40 features.

B. FEATURE CLASSIFICATION FOR MEDICATION
ADHERENCE WITH GAUSSIAN MIXTURE MODELS
Following feature extraction, classification is performed in
order to differentiate the sound samples into the four afore-
mentioned classes. GMMs are statistical models used in
many pattern recognition applications. They can be employed
to approximate any probability density function (pdf) given a
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number of components. Moreover, they have demonstrated to
yield sufficiently good results in audio processing [39]. Our
aim is to employ the GMM approach for feature classification
[40]. Thus, for each class a separate model is trained by
fitting the corresponding feature vectors to a GMM with
parameters {ai, µi,Ci}, i ∈ K, where K is the number of
components, ai is the mixture weight of component i, µi
is the d-dimensional vector, containing the mean values for
each feature, and C is the covariance matrix. The Gaussian
mixture density p(v|λn) is modeled as a linear combination
of multivariate Gaussian PDFs, where v is a feature vector
and λn is the GMM corresponding to class n. In order to
classify a test feature vector, we derive the P (v|λn) for each
class. The test feature vector is assigned to the class n with
the greatest likelihood P (v|λn). An expectation maximiza-
tion (EM) approach is utilized to derive the parameters Kn

, {ai, µi,Ci}n for the GMM λn corresponding to class n
that best fit the input data. The Gaussian mixture density of
each feature vector v is modeled as a linear combination of
multivariate Gaussian PDFs with the general form:

p(v|θi) =
1

(2π)
d
2 |Ci|2

e[−
1
2 (v−µi)

TCi
−1(v−µi)] (3)

where: θi = (µi,Ci), v is the d-dimensional feature
vector, µ is the d-dimensional vector, containing the mean
values for each feature, C is the dxd covariance matrix
and |C| is the determinant. The complete set of param-
eters for a mixture model with K components is Θ =
{a1, · · · , aK , θ1, · · · , θK}. Each GMM model λn for class
n is parameterized as follows:

λn = {ank , µnk ,Cn
k} (4)

where k = 1, · · · ,K
At this point we analyze the expectation-maximization

(EM) algorithm [41] employed to compute the GMM param-
eters in eq.(4). The membership weight of data point v in
component k given parameter Θ is defined as:

wik =
pk(vi, θk) · ak∑K

m=1 pm(vi|θm) · am
(5)

for all components k , 1 ≤ k ≤ K and all data samples
i , 1 ≤ i ≤ N . In each iteration of the EM algorithm for
Gaussian Mixtures we deploy an E-step and an M-step.

E-step
We compute wik presented in eq.(5) for all feature vectors vi
and all mixture components k

M-step
We calculate the new parameters. Given Nk =

∑N
i=1 wik the

sum of membership weights for the k− th component we get
the mixture weights:

anewk =
Nk
N
, 1 ≤ k ≤ K (6)

The updated mean:

µnewk =
1

Nk

N∑
i=1

wik · vi, 1 ≤ k ≤ K (7)

and the updated covariance:

Cnew
k =

1

Nk

N∑
i=1

wik(v − µi)
T (v − µi) (8)

Termination criteria
The termination criteria for the EM is the following:

log l(Θ)t+1 − log l(Θ)t ≤ ε (9)

where the log-likelihood, defined as log l(Θ) =∑N
i=1 log p(vi|Θ) and ε is a small user-defined scalar value.
In order to find the best fit for the data, we compute the

GMM for 1 to d = 40 components iterating over full and
diagonal covariance matrices, where d is the size of each
feature vector v. With the generation of each model we
estimate the Bayesian Information Criteria(BIC) [42]. The
model with the lowest BIC best fits the input data.

After the optimal parameters for the GMMs have been
computed and given d the number of features, K the number
of components of the ith feature vector vi , λn the GMM of
class n we get:

P (vi|λn) =

K∑
i=1

ani p
n
i (v) (10)

where ani are the mixture weights to satisfy the constraint:

M∑
i=1

ani = 1, ani > 0 (11)

Finally, and after the P (v|λn) for the test feature vector
v and for each class n is estimated, the test feature vector is
assigned to the class n with the greatest likelihood.

C. RELEVANCE FEEDBACK
This section describes the proposed relevance feedback ap-
proach for personalization of the trained models. The im-
portance of the relevance feedback mechanism lies in the
assumption that the initial dataset was compiled by a small
group of people. This means that it may not contain the
unique frequency patterns, related to the way that different
end-users exhale, inhale or activate the drug. Thus, a rele-
vance feedback mechanism should allow the personalization
of the trained models and the compilation of patient-specific
datasets. Initially, it is assumed that the patient has submitted
a set of personal feature vectors annotated to the corre-
sponding class using the relevance feedback functionality
depicted in Figure 9. Each complete user submission includes
N = 24 feature vectors corresponding to 12-seconds of
audio recording. The dataset used to train the models consists
of M = 1980 feature vectors, with 495 feature vectors per
class.
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(a) (b)
FIGURE 9: a) Relevance feedback functionality selection menu. The user taps a
classification result and activates the selection UI. b) After the result is corrected, it
can be resubmitted.

Given the set of feature vectors F we perform kNN search
with k = 1 in the dataset D for each feature vector vF n. The
result is denoted asDF n. The new personalized datasetDF is
the union of F with each DF n. At this point, it is important
to remove all the duplicate vectors. Algorithm 1 presents a
more detailed overview of the procedure.

Algorithm 1 Relevance feedback algorithm

Require:
1: User defined entries F = {vF 1, · · · ,vF n, · · · ,vFN}
2: Dataset D = {vD1, · · · ,vDm, · · · ,vDM}
3: Initialize: Personalized dataset DF = {} as an empty

set
4: for each vFn

∈ F do
5: DF n ← k nearest neighbors of vF n using D
6: DF = DF ∪ DF n
7: end for
8: DF = DF ∪ F

Ensure: Each element of DF is unique.

V. EVALUATION
This section focuses on the overall system evaluation
methodology. More specifically, the following subsections
describe the data collection and annotation approaches,
present the classification accuracy results and provide a more
detailed insight via the confusion matrices.

A. DATA COLLECTION AND ANNOTATION
We recorded several sound signals in indoor and outdoor
environments. The sounds were categorized into inhaler
actuations, exhalations, inhalations, and noise referring to
environmental or other sounds. Twelve healthy subjects used
the same inhaler device depicted in Figure 2 loaded with full
placebo canisters. For each subject a different canister was
used. They recorded 495 sounds per class reaching the total

FIGURE 10: Annotation toolkit UI. The user inspects the audio graph, selects a segment
corresponding to a certain class, and attaches the proper annotation.

of 1980 sounds. Each sound sample has a total duration of 0.5
seconds, sampled with 8 kHz sampling rate and 16-bit depth
. To compile the initial training dataset, an annotation toolkit
was employed. A user interface visualizes the audio samples
while the user selects parts of the audio files and assigns a
class. The annotated part is stored in a separate audio file.
Figure 10 shows the user interface of the annotation toolkit.

B. ADHERENCE MONITORING ACCURACY
This section presents the adherence monitoring accuracy re-
sults for the Cepstogram feature extraction method compared
to classical approaches, namely Spectrogram and MFCC
based features and data-driven approaches, namely FK [36]
and FKL [37]. Regarding the feature classification scheme,
we compare GMMs with well-established classification algo-
rithms, namely SVMs [43], Random Forests [44], ADABoost
[45]. The classification results are presented in Table 1 and
in Figure 11. 10-fold cross validation for evaluation of the
classifiers has been employed.

In order to compare the proposed method with FKL ap-
proach we utilized the publicly available implementation of
[37]. FKL receives time series as input and generates as
output new vectors. Thus, we utilize two approaches: In
the first approach, we use the extracted features of MFCC,
Spectrogram and Cepstrogram as input time series. This
way the FKL is used as preprocessing step. The results of
this approach are presented in the blocks named MFCC
FKL, SPECT FKL, CEPST FKL in Table 1. In the second
approach, we use the output of the GMM probability function
as input time series. The results are presented in the blocks
named MFCC GMM FKL, SPECT GMM FKL, CEPST
GMM FKL blocks of Table 1. As it can be observed, the
classification accuracy reaches 97% for all feature extraction
methods.

Furthermore, to provide a comparison with Continuous
Wavelet Transform (CWT) based approaches we utilized the
CWT with Morlet wavelet as a feature extraction method
[18]. Table 4 presents the confusion matrices for SVM, Ran-
dom Forest and AdaBoost classifiers for the 4-class problem
and for the Drug vs other sounds 2-class problem. Our results
agree with the results provided in [18] yielding a 99.18%
sensitivity, 99.73% specificity and 99.45% accuracy in the
identification of drug actuation sounds.
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TABLE 1: Classification accuracy (%) for the 4-class problem

MFCC Spectrogram Cepstogram
SVM 97.026 86.615 98.718
RF 96.205 97.282 97.744
ADA 96.205 98 98
GMM 96.718 94.769 98.513

MFCC FKL SPECT FKL CEPST FKL
SVM 93.128 86.308 95.744
RF 92.41 97.179 94.615
ADA 92.821 97.333 96

MFCC GMM FKL SPECT GMM FKL CEPST GMM FKL
SVM 96.718 94.821 98.513
RF 96.308 95.026 98.513
ADA 95.487 95.333 98.205

Finally, as it can be observed in Table 1 GMM yields
the best results reaching 98% in the case of Cepstogram
features, while SVM seems to be a good classifier for MFCC
and for Cepstogram but not for Spectrogram features. Con-
sidering the MFCC based feature extraction, GMM reaches
96%, SVM reaches 97%, Random Forest reaches 96%,
and ADABoost 96%. For the spectrogram-based feature
extraction method, the classification accuracy is 94.7% for
GMM, 86% for SVM, 97% for Random Forest, and 98% for
ADABoost. Finally, for the Cepstrogram, the classification
accuracy reaches 98% in the case of GMM classifier, 98%
in the case of SVM classifier, 97% for the Random Forest
approach, and 97% for ADABoost. The utilization of the
FKL preprocessing step does not provide better results than
the corresponding features used as input time series. e.g.
CEPST FKL with RF has yielded worse results than CEPST
RF.

FIGURE 11: Classification accuracy for the 4-class problem. Three feature extraction
algorithms are compared: i) MFCC ii) Spectrogram iii) Cepstogram

C. NOISE ROBUSTNESS ASSESSMENT
To assess the robustness to noise and other sounds, assuming
that the initial dataset was created under ideal conditions,
we compiled noisy datasets by adding background and en-
vironmental sounds [46], collected from freesound.org [47],
by superposing dataset audio segments x and noise n in the
following manner:

x′ = x + k ∗ n (12)

TABLE 2: Classification accuracy (%) vs added noise factor
Added noise and environmental sounds factor
0.00 0.10 0.20 0.50

MFCC

GMM 96.718 93.13 87.778 79.899
SVM 97.026 93.59 87.0202 79.4444
RF 96.205 93.23 86.2626 78.333
ADA 96.205 92.93 85.9091 72

SPECT

GMM 94.768 92.83 88.384 78.485
SVM 86.615 85.35 83.2323 78.68687
RF 97.282 95.66 91.8182 83.28283
ADA 98 95.15 92.0202 81.71717

CEPST

GMM 98.513 96.47 96.414 82.879
SVM 98.718 95.81 91.9192 83.93939
RF 97.744 95.91 92.7778 83.8889
ADA 98 96.11 91.6667 81.9697

MFCC GMM FKL ADA 96.718 91.364 87.172 78.131
SPECT GMM FKL ADA 94.821 93.384 87.727 77.121
CEPST GMM FKL ADA 98.513 94.242 94.444 81.162

The classification accuracy for different values of factor k
is shown in table 2.

As it is made obvious, the classification accuracy of each
method drops below 85% as added noise factor reaches 0.5.
Table 2 demonstrates that in noisy conditions, Cepstrogram
based GMM approach yields the best results.

D. CONFUSION MATRICES
Table 3 presents the confusion matrices of each feature
extraction method, for all classification algorithms performed
in the current study. As it can be observed, the classification
accuracy reaches 99% is some cases but, it is as low as 58%
in the case of support vector machines when accessing ex-
halations in spectrogram-based feature extraction. Finally, an
important observation is that the Cepstrogram feature based
extraction method demonstrates the lowest misclassification
rate in comparison to other approaches, which supports our
initial assumption that this feature extraction approach yields
the most separable feature representation.

E. EMPLOYING RELEVANCE FEEDBACK TO IMPROVE
CLASSIFICATION ACCURACY
In order to validate the relevance feedback functionality,
we employed the relevance feedback of a second group
consisting of five subjects. It is important to note that subjects
of the first group,that provided the audio samples, were not
included in the second group. Each person provided 20 sets
of annotated submissions with each submission to contain
24 annotated feature vectors. In the validation, process we
assume that one of the 20 sets is not annotated and derive
the classification accuracy for this set by employing the
following cross-validation approach: At first, we include only
two annotated sets for the compilation of the relevant dataset,
performed using the process described in subsection IV-C,
and derive the classification accuracy. Then, in each iteration,
one more set is included, the relevant dataset is recompiled
and the classification accuracy is recalculated. The process
is repeated until all remaining 19 sets are included. The pro-
cess evaluates the improvement of the classification accuracy
score relatively to the number of user submissions.

The results of the evaluation process are presented in Fig-
ure 12. The first column represents the classification accuracy
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(a)

(b)
FIGURE 12: Relevance feedback of Cepstrogram based features. (a) Classification
accuracy box plot as a function of included user submissions for the CEPST-GMM
approach. (b) Classification accuracy box plot as a function of included user submis-
sions for the CEPST-SVM approach.

result without relevance feedback, while the next columns
represent the classification accuracy for the corresponding
number of user submissions. CEPST-GMM shows the slow-
est improvement rate but appears to be more robust, since the
first column that represents the classification results without
relevance feedback are concentrated around 89%. CEPST-
SVM shows low classification accuracy without relevance
feedback but appears to have great improvement as user
submissions increase.

VI. DISCUSSION AND CONCLUSION
In this work, we have implemented and presented a novel
mHealth system for monitoring medication adherence in
obstructive respiratory diseases. The proposed system consist
of a BT acoustic sensor, a mobile application and a cloud
processing module. The smartphone application receives au-
dio samples from the audio sensor and extracts Cepstogram
features. The extracted features are then uploaded to a cloud
server, where GMM classifiers are executed for identifying
exhalation, inhalation drug usage and ambient sound events.
The smartphone application, enhances the inhaler usage
experience through intuitive interfaces of patient guidance
including a virtual agent, which can help patients follow

their action plan and assess their inhaler technique in a more
engaging manner. The extensive performance assessment
has revealed the efficiency of the proposed approaches in
both indoor and outdoor environments, significantly outper-
forming other state of the art approaches. Furthermore, the
proposed relevance feedback scheme enables the patient or
the researcher to correct misclassified results and resubmit
them allowing the personalization of the trained model in a
user-oriented manner, thus increasing even more the accuracy
and personalization of the system. As a future step, a number
of feedback sessions will be organized with the participation
of the MyAirCoach Advisory Patient Forum, in order to
evaluate the usefulness of the implemented functionalities,
suggest future extensions and optimize the implemented user
interfaces on the basis of actual patient needs.
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TABLE 3: Normalized % confusion matrix for MFCC, spectrogram and cepstrogram feature extraction approaches

Reference
MFCC SPECT CEPST

Drug Exhale Inhale Noise Drug Exhale Inhale Noise Drug Exhale Inhale Noise

Pr
ed

ic
tio

n
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Drug 97.54 0.00 0.21 0.21 97.54 0.00 0.00 0.00 99.38 0.41 0.00 0.41
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Other 2.05 3.86 0.82 96.70 0.00 40.65 3.69 95.44 0.21 1.23 0.00 98.77

RF

Drug 97.13 0.20 0.21 0.00 97.74 0.20 0.00 0.00 98.97 0.41 0.00 0.62
Exhale 1.44 95.93 2.26 4.33 0.00 96.95 2.05 2.69 0.82 97.35 1.64 1.65
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ADA
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Other 1.43 3.05 1.44 93.61 0.82 2.44 0.21 97.93 0.20 1.84 0.42 97.94

GMM

Drug 96.71 0.00 0.00 0.00 99.18 0.41 0.00 2.69 99.38 0.00 0.00 0.62
Exhale 0.82 96.14 1.23 2.68 0.62 93.29 1.64 6.00 0.41 99.18 1.43 2.27
Inhale 0.21 0.00 97.74 1.03 0.20 3.46 98.16 2.90 0.00 0.41 98.57 0.21
Other 2.26 3.86 1.03 96.29 0.00 2.84 0.20 88.41 0.21 0.41 0.00 96.90

TABLE 4: Normalized % confusion matrix for continuous wavelet transform.
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Drug 98.97 0.40 0.20 0.20
Exhale 0.00 94.10 1.64 8.60
Inhale 1.03 0.81 95.70 2.67
Other 0.00 4.69 2.46 88.53

ADA

Drug 99.18 0.00 0.41 0.41
Exhale 0.00 95.91 1.64 6.56
Inhale 0.20 0.61 96.31 1.64
Other 0.62 3.48 1.64 91.39

ADA Drug Other

2-Class Drug 99.18 0.27
Other 0.82 99.73
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