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Fig. 2. OFDM block diagram

and the procedure continues likewise for the next subcarrier
symbol szk+1

. Since this architecture resembles that of a
decision-feedback equalizer [27], one can expect an error
propagation phenomenon. However, assuming that ŝzk has
been correctly detected, its interference will be canceled from
the subsequent stages.

It is well-known that the detection order in OSIC ar-
chitecture has significant impact in the performance of the
equalizer [28], [27]. Typically, the optimal detection order can
be obtained by maximizing the signal-to-interference and noise
power ratio (SINR) at the receiver, since it is known that the
maximization of the SINR also minimizes the achievable bit
error rate (BER) in an OFDM system [29]. Hence, at each
stage k, we have that

zk = argmax
l

|gH
l hl|2∑

m
m̸=k

|gH
l hm|2 + σ∥gl∥22

, (9)

∀l ∈ [zk+1, zk+2, . . . , zN ].

It is important to note that, the computation of SINR at the
stage zk, requires the knowledge of gzk+1

, . . . ,gzN equal-
ization vectors, which are obtained from the solution of the
following systems:(

HH
zk
Hzk + σ2IN−k+1

)
gl = hl, with l ∈ [zk+1, zN ] (10)

where the autocorrelation matrix is the same for all the RHS,
since it is updated once per stage.

Concatenating the equalization vectors of the current stage
zk and the subsequent stages zk+1, . . . , zN , into the matrix
Gzk = [gzkgzk+1

. . .gzN ]T ∈ CN−k×N , then at each stage
the solution of the following system with N RHS is obtained
by solving the following system:(

HH
zk
Hzk + σ2IN−k+1

)
Gzk = HH

zk
. (11)

III. PROPOSED EQUALIZER

In this section, first we provide a preliminary discussion for
the Galerkin projections technique which is employed for the
efficient solution of systems of equations with multiple RHS.
Afterwards, we describe the proposed techniques for OSIC
equalization which exploit the Galerkin projections. Finally,
the proposed serial/parallel ICI architecture is introduced.

A. Preliminaries: Galerkin projections

To reduce the computational cost of the direct method,
approximate solutions through iterative techniques are usually
employed. It is known that the so-called Krylov subspace

methods [30], [31], [32] (i.e. Steepest Descent, Conjugate
Gradient, LSQR) can be used to efficiently solve the linear
system of equations.

In the case of block MMSE for ICI equalization, one
must compute the equalization matrix G ∈ CN×N via
the solution of the system of equations with multiple RHS,(
HHH+ σ2IN

)
G = H, where H ∈ CN×N ; afterwards

the soft-decisions vector must be obtained, given by s̃ =
Gy ∈ CN×N . Since MMSE equalization turns into finding
a solution of a linear system, where the matrix is Hermitian
and positive definite, the Conjugate Gradient (CG) algorithm
is more suitable from other Krylov subspace methods.

The straightforward application of CG for solving the
multiple RHS (10) in N stages, would require a complexity
of O(N4I) complex operations, where I =

∑N
k=1 Ik and

Ik denotes the total iterations and the k-th stage iterations
respectively, required for the convergence. In particular, let us
denote by Cconvcg the complexity of the conventional technique,
then:

Cconvcg =

N−1∑
k=0

N−1∑
l=k

Ik∑
i=1

O
(
(N − k)2

)
︸ ︷︷ ︸

CG iterations︸ ︷︷ ︸
multiple RHS︸ ︷︷ ︸
stages

. (12)

where the outer sum represents the total complexity for the
computation of the N × N equalizer matrix (with the k-th
column vector representing the equalizer at the k-th stage), the
middle sum represents the complexity for the remaining RHS
at the k-th stage, and the inner sum represents the complexity
of the CG algorithm which runs for a predefined number of
iterations Ik.

A more sophisticated approach for iterative approximation
of systems with multiple RHS has been suggested in the
literature, known as Galerkin Projections (GP) [17], [23], [33]-
[34]. The main idea of this technique is to exploit an already
generated Krylov subspace for the solution of more than one
system. Recall that the construction of the Krylov subspace is
the most costly step of the CG algorithm. Therefore, through
low cost projections on the generated subspace, approximated
solutions of the unsolved RHS can be obtained.

Originally [23],[33], the approximated solutions given by
the projections, are used as initialization vectors for the CG
procedure, since proper initialization of the CG algorithm
provides one way to reduce complexity, without sacrificing
estimation accuracy. According to the GP methodology, the
multiple RHS system is decomposed into two parts, the seed
system and the non-seed systems. The seed system, is solved
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iteratively via the CG algorithm, where the solution vector is
expressed as a linear combination of the Krylov subspace basis
components. Afterwards, the solution vectors of the remaining
non-seed systems can be approximated based on projections
onto the already generated Krylov subspace. This procedure
continues until all the systems have been selected as a seed
once. The described procedure of selecting a new seed is
termed as restart.

Here let us note that the order of the seed selection is ob-
tained in a lexicographic manner. The complexity order of the
algorithm is given by Ccggp =

∑N−1
k=0

∑Ik
i=1O

(
(N − k)2

)
,

where Ik is the number of algorithm’s iterations required for
the convergence of the k-th system. From the perspective of
complexity minimization, the value of Ik must be determined
based on the approximation error at each iteration, rather
than defined a priori. In that case, fast convergence to the
solution implies low computational complexity. In [23] it was
proven that, by using GP as initialization, a very small number
of restarts is required for the convergence of all the RHS,
indicating super-linear convergence behavior.

B. Proposed Algorithm

Let us here describe the proposed iterative algorithm, which
can be used for efficiently computing the equalizer at the zk-
stage of the OSIC, i.e.

AzkG = HH
zk

(13)

where Azk ≜
(
HH

zk
Hzk + σ2IN−k+1

)
, and for brevity we

have removed the stage indexing from the equalizer matrix G.
Let the m-th system be the seed, then at the i-th CG iteration, a
basis of the Krylov subspace will have been formed as Km,i =
span{d0

m,d1
m, . . . ,di−1

m }, where dℓ
m is the search direction of

the m-th system at the ℓ-th iteration, and span{·} denotes the
generating function of all linear combinations of the vectors
dℓ
m for ℓ = 0, 1, . . . , i − 1 [30]. After at most N iterations,

the obtained solution gm ≜ gN
m, minimizes the associated

quadratic functional J with respect to gm, i.e.

J (gm) =
1

2
gH
mAzkgk − hH

mgm. (14)

According to the well-known CG procedure, the search direc-
tion di

m is constructed by applying the i-th step of the Gram-
Schmidt procedure to the residual vector rim = −∇J (gi

m) =
hm−Azkg

i
m and the preceding directions d0

m,d1
m, . . . ,di−1

m .
Taking into account that the gradient ∇J (gi

m) is orthogonal
to the subspace spanned by the previous directions, we get:

di
m = rim + βidi−1

m (15)

where βi =
(rim)Hrim

(ri−1
m )Hri−1

m
. For the given set of i A-conjugate

directions, the approximate solution gi
m can be expressed as

a linear combination of the already estimated directions as
follows:

gi
m = α0d0

m + . . .+ αidi
m = xi−1

m + αidi
m (16)

where the step-size αi is obtained via line minimization as
αi =

(rim)Hrim
(di

m)HAzk
di

m
. Based on Eq. (16), the residual vector for

the i-th iteration can be expressed as rim = ri−1
m −αiAzkd

i
m.

Considering the non-seed systems, i.e. the remaining N −1
RHS,

Azkgl = hH
l , with l ∈ [2, . . . , N ] (17)

the approximate solutions are obtained by solving the mini-
mization problems minα J (gi

l+αdi
m) for all l. Note that, the

search direction vector di
m has already been generated from

the i-th iteration of the seed system. The update rule for the
solution vector is expressed as:

gi
l = gi−1

l + αldi
m (18)

where αl =
(di

m)Hri−1
l

(di
m)HAH

zk
di

m
and ri−1

l is the residual of the l-th
system at the i− 1 iteration which is updated according to:

ril = ri−1
l − αlAH

zk
di
m. (19)

Note that, the quantity AH
zk
di
m has already been computed at

the i-th iteration of the seed system.

Algorithm 1: Galerkin projections-based CG algorithm
(multiple-seed version) for the k-th SIC stage.

Data: Azk , Hzk , G0

Result: G
1 Initialization: R0 = Hzk −AzkG

0

2 for m = 1, 2, . . . , N − k + 1 do
3 i←− 0
4 while ∥ri−1

m ∥ < ϵ do
5 ρi ←− ∥ri−1

m ∥
6 if i = 0 then
7 di

m ←− ri−1
m

8 else
9 βi ←− ρi/ρi−1

10 di
m ←− ri−1

m + βidi−1
m

11 Vi ←− Azkd
i
m

12 Ci ←− (di
m)HVi

13 αi ←− ρi/Ci
14 gi

m ←− gi−1
m + αidi

m

15 rim ←− ri−1
m − αiVi

16 for ℓ = m+ 1, . . . , N do
17 ζi ←− (di

m)Hri−1
ℓ /Ci

18 gi
ℓ ←− gi−1

ℓ + ζidi
m

19 riℓ ←− ri−1
ℓ − ζiVi

20 i←− i+ 1

The described procedure is shown in Algorithm 1. The “for”
loop at line 2, represents the restarts, while at line 4 is the ter-
mination criterion. At lines 5-16 the Galerkin projection steps
are listed, which are followed by the projections procedure at
lines 17-21. The costly parts of the algorithm are the matrix-
vector products at lines 12 and 18.

Performance/Complexity Trade-off: The termination crite-
rion of Algorithm 1 is defined by the value of the parameter
ϵ, which determines the trade-off between the performance and
the complexity of the method. In the following, we provide
a relation between the parameter ϵ, which is a user-defined
parameter, and the reconstruction error of the algorithm, which
is defined as ζ ≜ ∥g⋆

m − gI
m∥.
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Given that I denotes the maximum number of iterations for
the m-system in Algorithm 1, then the error residual vector is
given by:

rIm = bm −RmgI
m = Azkg

⋆
m −Azkg

I
m = Azk

(
g⋆
m − gI

m

)
(20)

where g⋆
m is the equalizer vector computed via matrix inver-

sion in (6). Then, the norm of the error residual can be bounded
according to the following expression:

∥rIm∥ < ∥Azk∥∥g⋆
m − gI

m∥ = ∥Azk∥ζ (21)

To proceed, note that ∥Azk∥ = ∥HH
zk
Hzk + σ2I∥ <

∥HH
zk
Hzk∥+ σ2 < ∥Hzk∥2 + σ2. Since Hzk has k− 1 fewer

columns than Hz1 , we have that ∥Hzk∥ < ∥H∥, hence we
have that ∥Azk∥ < ∥H∥2 + σ2. Therefore, the residual error
is upper bounded by:

∥rIm∥ <
(
∥H∥2 + σ2

)
ζ ≜ ϵ (22)

i.e. ϵ represents the normalized reconstruction error. Eq. (22)
provides us with the termination criterion based on the recon-
struction error. Let us note here that, the value of the parameter
ϵ has a direct impact on the maximum number of iterations
which are required for convergence. In particular, a small value
would result into small reconstruction error and also to a high
number of iterations (I → N ), which are required in order
to reach the desired accuracy. On the contrary, a large value
for ϵ would result into worse accuracy and fewer iterations
(I ≪ N ).

C. Single-seed version

The fact that a very small number of restarts is usually
required for the convergence of all the RHS, motivated us to
propose the single-seed approximation, i.e. M = 1. However,
it should be noted that a direct application of M = 1 to the
Algorithm 1 would suffer from large approximation error, as
it will be justified in the rest part of this work. For this reason,
we consider the equivalent transposed system of equations, i.e.(

HzkH
H
zk

+ σ2IN
)
Gzk = Hzk . (23)

In this case, the size of the systems remains the same, while
the number of the RHS is decreased by one. It is important to
note that, the reduction of the RHS at each stage, enables a
more meaningful connection between the stages and the RHS,
i.e. each RHS corresponds to a specific stage.

The seed system is solved by the CG algorithm obtaining a
high accuracy solution, while the non-seed systems are solved
by the GP procedure approximating closely the true solutions.
However, since the non-seed systems will be used only for the
ordering step of OSIC equalizer, this approximation scheme
will have a smaller impact to the overall performance. In Table
I we illustrate this idea, where at each position the term CG or
GP is used to indicate the method which is used to approximate
the equalization vector.

The described procedure is shown in Algorithm 2. Note that,
the projection procedure, listed at lines 16-20, is conducted for
N − k + 1 systems.

TABLE I
ALLOCATION OF THE CG AND GP METHODS, FOR THE SINGLE-SEED

VERSION

←
−

St
ag

e
in

de
x

Subcarrier index −→
1st 2nd 3rd 4th . . . Nth

z1 CG GP GP GP . . . GP
z2 – CG GP GP . . . GP
...

...
...

...
...

zN – – – – – CG

Algorithm 2: Galerkin projections-based CG algorithm
(single-seed version) for the k-th SIC stage.

Data: Azk , Hzk , G0

Result: Gzk

1 Initialization: R0 = Hzk −AzkG
0

2 i←− 0

3 while ∥ri−1
1 ∥ < ϵ do

4 ρi ←− ∥ri−1
1 ∥

5 if i = 0 then
6 di

1 ←− ri−1
1

7 else
8 βi ←− ρi/ρi−1

9 di
1 ←− ri−1

1 + βidi−1
1

10 Vi ←− Azkd
i
1

11 Ci ←− (di
1)

HVi

12 αi ←− ρi/Ci
13 gi

1 ←− gi−1
1 + αidi

1

14 ri1 ←− ri−1
1 − αiVi

15 for ℓ = 2, . . . , N − k + 1 do
16 ζi ←− (di

1)
Hri−1

ℓ /Ci
17 gi

ℓ ←− gi−1
ℓ + ζidi

1

18 riℓ ←− ri−1
ℓ − ζiVi

19 i←− i+ 1

D. Serial/Parallel interference cancellation architecture

In this subsection we introduce a modified successive
interference cancellation (SIC) architecture operating at the
receiver. The proposed structure consists of a parallel interfer-
ence cancellation (PIC) unit within each successive step. The
main idea is to exploit the approximated equalization vectors
of each stage, which have been obtained by the Galerkin pro-
jections, in order to cancel out all the remaining interference
of the adjacent subcarriers. Potentially, this structure could
remove the entire interference at each stage, thus avoiding the
ordering step.

The proposed SIC/PIC equalizer, termed as Forward-OSIC
(FOSIC), is composed by N stages, where the ordering of
each stage is defined by zk ∈ [1, N ]. The functional block
of the k-th stage is depicted in Fig. 3. It is composed by the
following basic units: 1) Equalizer computation, 2) Channel
estimation, 3) Forward ICI cancellation, 4) Ordering Update,
and 5) Current ICI cancelation unit. The outputs are: the
estimated symbol ŝzk , the index zk+1 of the symbol to be
detected at the next stage and the updated input stream yzk .
In the following part of this section, we focus on each one of
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the building units separately.
The Equalizer Computation unit employs the proposed low-

complexity algorithm. This will provide us the equalization
vectors for the remaining adjacent subcarriers, i.e. gl, l ∈ [k+
1, . . . , N ].

The operation of Channel Estimation unit, which is depicted
with dotted line, is out of the scope of this paper; a detailed
review regarding efficient estimation schemes for doubly se-
lective channels may be found in [12], [35], [36].

The operation of the PIC unit, removes the ICI caused by
the undetected symbols of the remaining subcarriers, from
the input stream yk, while the ICI caused by the previously
detected symbols has been removed from the previous stages.
Assuming that the symbol decisions are correct, i.e. ŝk =
sk, k ∈ [1, . . . , N ], then at the output the updated input signal
has no remaining ICI. Therefore, the updated input stream y′

N

can be expressed as:

y′
N = hksk +w. (24)

Note that the MMSE equalizer essentially becomes the
matched-filter (MF) [13] for the input y′

N . The equalization
vector of the k-th stage may be written as:

gT
k = (hH

k hk + σ2I)−1hH
k =

1

σ2 + ∥hk∥22
hH
k . (25)

The updated input vector for the current stage k, can be
expressed as y′

N = y −
∑N

m=1,m ̸=k Hmsm, and thus, the
current symbol can be estimated as follows:

s̃k = gT
k y

′
N =

hH
k y′

N

σ2 + ∥hk∥22
. (26)

The decision of the current symbol, and hence the output of
the k-th stage is:

ŝk = Π(s̃k). (27)

Finally, the Current ICI cancellation unit is employed in order
to remove the currently detected symbol from the input stream
yk according to:

yk+1 = yk − hkŝk. (28)

Then yk+1 is forwarded to the next stage.

IV. COMPUTATIONAL COMPLEXITY

In this section we provide a detailed description of the
complexities required by the presented schemes, in terms of
floating point operations (FLOP). The complexity of the OSIC
equalizer, Cosic, consists mainly from the cost of autocorre-
lation matrix computation/update, the solution of the linear
system with multiple RHS and the ordering cost, i.e.

Cosic = Cosicupdate + Cosicinversion + Cosicordering (29)

Specifically, considering the first term of this sum, we have
that:

Cosicupdate =

N−1∑
k=0

{
N(N − k)2 +

(N − k)(N + k)

2
+

N − k

2

}
(30)

=
1

6
N(2N3 + 5N2 + 4N + 1) FLOPs. (31)

FLOP counts for the Gram matrix HH
k Hk computation, with

Hk ∈ CN×N−k, is equal to N(N−k)2+(N−k)(N−N−k
2 )−

N−k
2 .
Considering now Cosicinversion and assuming that the inversion

of a Hermitian matrix is obtained via LDL decomposition, we
have that Cosicinversion = 1

6N(5N3 + 13N2 + 4N + 2) FLOPs.
The cost of the ordering based on the maximum SINR is
Cosicordering = 1

6N(4N3+3N2−N) FLOPs. Therefore, the total
complexity is Cosic = 1

6N(11N3 + 21N2 + 7N + 3) FLOPs.
Let us now proceed with some analysis regarding the com-

putational complexity of the proposed single-seed algorithm.
For this, we can decompose the costs into the following
operations:

• Computation of the autocorrelation matrix 3N3

2 + N2

2 −
N
2 FLOPs

• Hermitian matrix-vector multiplication Azkd
i
k, ∀k ∈

[0, N − 1] and i ∈ [1, Ik] in the CG procedure

Ccg =
N−1∑
k=0

Ik∑
i=1

{
N2 − N

2

}
(32)

• Matrix-vector multiplication in the GP procedure:

Cgp =

N−2∑
k=0

Ik∑
i=1

{2N(N − k − 1)− (N − k − 1)} (33)

Let Ī denotes the average number of iterations, which are
required for convergence of the CG algorithm per stage. Then,
the complexity costs (32) and (33) can be approximated as:

Cavcg = Ī
N−1∑
k=0

{
N2 − N

2

}
= Ī

(
N3 − N2

2

)
FLOPs (34)

and

Cavgp = Ī
N−2∑
k=0

{2N(N − k − 1)− (N − k − 1)} (35)

= Ī
1

2
(N(2N − 1)(N − 1)) FLOPs. (36)

Worst case scenario: In the worst case, the number of
the required iterations Ik for convergence of the CG al-
gorithm at each stage is Ik = N − k. In that case, the
complexity of the proposed single-seed algorithm is equal
to Cwcg−gp = 1

12N
(
14N3 + 17N2 − 5N − 2

)
FLOPs. It is

obvious that Ccg−gp ≤ Cconv, i.e. the complexity of the
proposed technique (single-seed version) will be always lower
than the conventional one.

FOSIC complexity: The proposed FOSIC architecture ex-
ploits the already known equalization vectors of each stage,
in order to remove the remaining ICI through tentative deci-
sions. The additional cost over OSIC complexity, is for the
computation of the tentative symbol decisions, which is given
by: Cfosic =

∑N−1
k=0 {2N(N − k)− (N − k)} = N2(2N − 1),

and thus, we conclude that OSIC and FOSIC architectures
have the same complexity order.

In Table II, we summarize the computational complexity for
the conventional technique and the proposed one in terms of
FLOPs.
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zk

Equalizer
computation

Gzk

Channel
estimation

H

yzk

Forward ICI cancellation

s̃zl = gT
zl
y′
zl

Π MF

y′
zl

− Hŝzl

Ordering

update

zk+1 yzk+1

Current ICI
cancellation
yzk − hzk ŝzk

Π(·)
ŝzk

Fig. 3. FOSIC block model for the zk-th stage of the proposed equalizer. The part in blue color, cancel the ICI caused due to the subsequent symbols.

TABLE II
COMPLEXITY OF BLOCK OSIC, NON-BANDED EQUALIZERS

Method Complexity (FLOPs)

Conventional technique [12] via Gaussian elimination 1
6
N(11N3 + 21N2 + 7N + 3)

via LDL 1
6
N(7N3 + 18N2 + 8N + 3)

Proposed algorithm (OSIC) w.r.t. Ī (mean # iterations) Ī
(
1
2
N(1− 2N)2

)
+ 3N3

2
+ N2

2
− N

2
worst case scenario 1

6
N

(
7N3 + 17

2
N2 − 5

2
N − 1

)
Proposed algorithm (FOSIC) worst case scenario 1

6
N

(
7N3 + 29

2
N2 + N

2
− 4

)

TABLE III
BASIC PARAMETERS FOR SIMULATION EXPERIMENTS

Parameter Value
Modulation mode 4QAM, 16QAM

Number of subcarriers N = 32
FFT length 32

Cyclic prefix length Ncp = 3
Channel length L = 3

V. SIMULATION RESULTS

In this section, the performance of the proposed equalizer
is experimentally evaluated via extensive simulations.

A. Setup

The simulations were performed with machine precision
10−16 and the number of Monte-Carlo realizations was at
least 103. Furthermore, we have made the assumptions of
full channel state information and perfect carrier and phase
synchronization.

The general setup includes the simulation of an OFDM
system which operates over a doubly selective channel. The
basic parameters for the simulation experiments are shown
in Table III. For the channel modeling we have adopted the
wide-sense stationary uncorrelated scattering (WSSUS) fading
model with a 3-tap exponential delay power profile, given by:

σ2
h(l) =

e−l/L∑L−1
m=0 e

−m/L
, for l = 0, 1, . . . L− 1 (37)

where L = 3. Each channel tap is a complex Gaussian random
process independently generated with the Doppler spectrum
based on the Jakes’ model [37]. The autocorrelation function
of each channel tap is equal to the zero-th order Bessel
function of the first kind, i.e. rt(∆t) = J0(2πfd∆t), where
∆t ∈ [−N,N ] ⊂ Z and fd is the normalized Doppler spread
defined as fd ≜ 1

F
fcv
c , where v is the vehicle relative velocity,

fc is the carrier frequency, F is the subcarrier separation, and
c is the speed of light. In this work, we have adopted the
normalization over the signaling rate [14], i.e. F = N .

To evaluate the performance of the proposed equalizer,
several techniques from the literature of ICI mitigation have
been employed. In particular, as the best one in terms of BER
performance we have used the equalizer of [12] (termed as
Block OSIC, non-banded), while as a low-complexity tech-
nique we have used the equalizer of [38] (termed as Block
MMSE, banded-windowed).

It is important to mention here that, in the case of banded-
windowed equalization, the soft-decision is given by:

x̃w = HH
K

(
HKHH

K +
σ2
z

γ
C(w)C(w)H

)−1

yw (38)

where HK is the K-banded approximation of the frequency-
domain channel matrix, i.e. HK = EK ◦H. The parameter
γ ∈ (0, 1] is the regularization parameter and w is the window
applied to the received symbol y, with yw ≜ C(w)y. The
design of the window was based on the maximum SINR
criterion [14].

Additionally, as an alternative to block equalization we have
used the serial equalizer of [13] (termed as Serial DFE). The
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Fig. 4. BER comparison w.r.t. SNR for low Doppler spread and 4QAM

number of subcarriers that are processed at each step is equal
to K. Another important characteristic of the technique in [13]
is the PIC operation which is employed at the output of the
equalizer, where the number of the PIC iterations determines
the complexity/performance trade-off of the technique.

B. BER performance

In Figs. 4-6 the BER of 4QAM modulation w.r.t. SNR is
shown, for different values of normalized Doppler frequency
fd. We can observe that, for very low Doppler spreads
(fd < 0.005), all the techniques have about the same perfor-
mance. For higher Doppler spreads, the banded and the serial
approximation techniques suffer from severe ICI, while the
value of K has great impact at their performance. For fd ≤ 0.1
the block DFE technique [39] exhibits BER performance close
to the OSIC (Fig. 5), while for higher Doppler spreads, K
must be also increased in order to retain this performance.
On the contrary, the OSIC techniques are able to mitigate
effectively the ICI under all Doppler spread cases. The BER of
the proposed technique approximates closely that of the block
OSIC non-banded equalizer [12], depending on the parameter
ϵ. Also note that, the performance of the proposed equalizer
for the larger error tolerance case, ϵ = 108, does not depend
on the different values of the normalized Doppler frequency
fd.

The application of OSIC architecture is significantly favored
for the 16QAM case, with the normalized Doppler frequency
set to fd = 0.3. As it is shown in Fig. 7, the banded and serial
equalizers seem to be totally ineffective.

In Fig. 8 we show the mean-square-error (MSE) of the
proposed FOSIC architecture w.r.t. the SNR for fd = 0.3. We
consider multiple- and single-seed versions with ϵ = 10−12

and ϵ = 10−8 respectively. The proposed FOSIC architecture
with the multi-seed algorithm has the lowest MSE, along with
the single-seed version for SNR > 8. The performance gains
of the proposed structure seem to be significant at the high
SNR regimes, where there is small error propagation due to
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Fig. 5. BER comparison w.r.t. SNR for medium Doppler spread and 4QAM
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Fig. 6. BER comparison w.r.t. SNR for high Doppler spread and 4QAM

incorrect symbol detection. Also note that, the Block SIC
is banded and windowed according to the maximum SINR
criterion [14], while the serial DFE [13] has a PIC operation
after the DFE, performing 3 iterations. Note that the MSE of
the Block SIC increases along with the SNR, which is due to
the bad condition of the equalization matrix.

C. Complexity

Let us now examine the performance of the proposed itera-
tive algorithm in terms of computational complexity. In Table
IV, the complexity order of the employed techniques is shown.
Note that, Ī denotes the mean iterations number required for
the convergence of the proposed iterative algorithm.

In Fig. 9 the complexity of the proposed algorithms is
shown w.r.t. the number of the subcarriers. The complexity is
expressed in terms of complex floating-point operations. For
reference, we also show the complexity of the conventional
technique, when computed either via the Gaussian Elimination
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or via the LDL factorization. For the proposed algorithms we
show the worst case scenario and the average case, where Ī
is the average number of iterations. Note that, the average
number of required iterations for the convergence of the CG
algorithm, i.e. Ī , is a function of the parameter ϵ, as it can be
shown in Fig. 9. Additionally, we plot the complexity of the
multiple-seed version of the algorithm.

Based on the complexity curves, we confirm that the
proposed algorithms practically have lower complexity cost
than the conventional technique. The multiple-seed version
(with ϵ = 10−12) has the lowest complexity gain and hence
almost zero reconstruction error. The single-seed version has
considerable complexity gains, depending on the ϵ. Even for
the case of ϵ = 10−12, the complexity drops an order of
magnitude for large OFDM blocks.

D. Convergence

In the following we investigate the convergence rate of the
seed and the non-seed systems. More precisely, we verify the

TABLE IV
COMPARISON OF THE COMPUTATIONAL COMPLEXITY ORDER

Equalizer Complexity
Proposed schemes (CG-GP {F}OSIC) O(N3Ī)
non-banded OSIC (Choi et al. [12]) O(N4)
DFE with K taps (Cai et al. [13]) O(N2K)
banded MMSE-BDFE windowing (Rugini et al. [38]) O(NK2)
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Fig. 9. Complexity w.r.t. the number of subcarriers, SNR = 15dB,L = 3

fast convergence rate of the systems due to the initialization
based on Galerkin projections, and thus the reduction of the
system’s size through the OSIC architecture. In Fig. 10, the
convergence curves of the proposed algorithm at the 1st OSIC
stage are depicted; each curve, indexed with the variable l,
represents the squared norm of the estimation absolute error
∥g1,l − g⋆

1,l∥2, l = 1, . . . , N , with respect to the CG iteration
number, where g1,l is the approximated equalization vector
of the 1-st OSIC stage for the l-th subcarrier, while g⋆

1,l is
its optimum value. The SNR for this experiment was set to
15dB, while the error tolerance to 10−8.

The top curve in Fig. 10 shows the convergence of the
1st subcarrier at the 1st stage. It requires up to N iterations
to converge to the solution g1,1, since no initialization is
employed. For the next subcarriers, due to the Galerkin pro-
jections, there is a significant increase in the convergence rate.
Indeed, concerning the 7th subcarrier, the error ∥g1,7−g⋆

1,7∥2
begins from 10−4, which verifies the fact that the projections-
based initialization vector is essentially the solution vector for
the majority of the subcarriers.

In Fig. 11, the convergence curves of the proposed algorithm
at the 2nd - 48th OSIC stages are depicted; each curve, indexed
with the variable k, represents the estimation’s absolute error
∥gk,1 − g⋆

k,1∥, k = 1, . . . , N , with respect to the CG iteration
number. As the OSIC stage increases, the 1st subcarrier
of each stage exhibits faster convergence rate. Recall that
in the OSIC architecture, the linear system dimensions are
reduced at each successive stage. This process reduces also
the eigendimensions of the system which results into increase
of the convergence speed of the proposed iterative algorithm,
since the convergence rate of the CG algorithm is strongly
related with the number of the distinct eigenvalues.
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Fig. 10. Convergence rate of CG-GP algorithm for all 48 subcarriers at the
z1 OSIC stage
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Fig. 11. Convergence rate of CG-GP algorithm of the 1st subcarrier at the 2
- 48 OSIC stages

VI. CONCLUSION

In this work, we introduced an OSIC based interference
cancellation scheme for OFDM systems operating over doubly
selective channels. The key feature of this architecture is that
it removes the ICI caused by both the previously detected
symbols and the forward ones, which are temporally detected
at each stage. To estimate efficiently the equalizer filters, a
Conjugate Gradient based method that applies Galerkin pro-
jections for the initialization of the filters has been proposed,
accelerating the convergence rate of the algorithm. Different
initialization schemes were evaluated in terms of both perfor-
mance and complexity. The proposed scheme has been tested
via simulations, assuming a practical communication scenarios
with high Doppler delay spreads. The experimental results
showed that the proposed equalizer achieves lower BER values
than the existing non-banded ICI cancellation schemes, at a
lower computational cost.
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